Theoret. Chim. Acta (Berl.) 57, 131–144 (1980)

SINDO1 III. Application to Ground States of Molecules Containing Fluorine, Boron, Beryllium and Lithium Atoms

Karl Jug and D. N. Nanda

Theoretische Chemie, Universität Hannover, Callinstr.3A, 3000 Hannover, Germany

Molecular geometries, binding energies, ionization potentials and dipole moments are calculated by the SINDO1 method for a large number of molecules containing F, B, Be and Li atoms. Comparison is made with MINDO/3, MNDO and where possible with STO-3G results. The explicit data and an error statistics show that SINDO1 is the most reliable except for ionization potentials.

Key words: Application of SINDO1 to ground state of molecules – containing F, B, Be, Li.

1. Introduction

In two preceding papers [1, 2] we described the SINDO1 method and its application to molecules containing carbon, nitrogen and oxygen atoms. Here we wish to present an application to the rest of first-row elements. Fluorine, boron, beryllium and lithium containing compounds are investigated with respect to their geometries, binding energies, ionization potentials and dipole moments. MINDO/3 papers [3] contain only fluorine and boron, MNDO papers [4, 5] do not contain lithium.

2. Geometries

Table 1 contains theoretical and experimental data on geometries. Besides MINDO/3 and MNDO, some STO-3G results [6–10, 22] are listed. Experimental data are usually from Dewar's papers, those with a superscript are from various

Molecule	Coordina	ate Exp	SINDO1	MINDO/3	MNDO	STO-3G
FH	FH	0.917 ^e	0.910	0.913	0.956	0.956
FH ₂	FH	(0.920^{a})	1.013			
	HFH	180.0	180.0			
CF	CF	1.267 ^c	1.265		1.340	1.293
HCF	CF	1.314	1.289		1.285	1.311
	CH	1.121	1.109		1.120	1.142
	HCF	101.6	108.8		111.1	102.3
CH ₃ F	CF	1.384 ^{6,a}	1.364	1.378	1.347	1.384
	CH	1.097	1.092	1.102	1.118	1.097
	HCF	108.5	109.0	107.3	110.6	108.3
C_2HF	CC	1.198 ^{6,d}	1.228	1.199	1.192	1.168
	CF	1.279	1.319	1.331	1.277	1.318
	CH	1.053 ^b	1.050	1.072		1.062
³ NF	NF	1.51°	1.283		1.215	1.342
FCN	CN	1.159 ^{6,a}	1.158		1.159	1.160
	CF	1.262	1.311		1.273	1.316
OF	OF	1.30°	1.310		1.226	
HOF	OF	1.442	1.341		1.277	1.354
	OH	0.966	0.986		0.964	1.006
	HOF	96.8	102.7		107.9	101.4
FCO	CO	1.18 ^c	1.176			1.224
	CF	1.34	1.332			1.349
	FCO	135	134.2			125.4
HFCO	CO	1.183 ^{6,4}	1.202		1.222	1.210
	CF	1.341	1.340		1,328	1.351
	CH	1.100	1.090			1.108
	FCO	122.7	122.4		117.9	122.1
	HCO	129.0	126.2			125.6
FNO	NO	1.136ª	1.165		1,161	1.222
	NF	1.514	1.352		1.305	1.381
	FNO	110.1	113.2		113.8	108.2
FNO_2	NO	1.23 ^{b,d}	1.234			
	NF	1.35	1.358			
	ONO	(125)	131.8			
F ₂	FF	1.418	1.306	1.446	1.266	1.315
CF ₂	CF	1.300 ^{b,d}	1.304		1.304	1.323
	FCF	104.9	108.3		108.3	102.7
CH_2F_2	CF	1.358	1.355		1.352	1.378
	CH	1.092	1.098		1.129	1.109
	FCF	108.3	108.5		106.8	108.7
	HCH	111.9	109.4		108.2	108.8
C_2F_2	CC	1.20	1.240			1.167
	CF	1.28	1.324		1 071	1.323
NF ₂	NF	1.3504	1.314		1.2/1	1.303
	FNF	103.3	106.5		109.7	102.0
$N_2F_2(cis)$	NN	1.214	1.192		1.240	1.2//
	NF	1.384	1.347		1.281	1.3/3
	NNF	114.5	116.3		121.0	1 202
$N_2F_2(trans)$	NN	1.231'	1.196		1.261	1.283
	NF	1.396	1.352		1.277	1.3/1
	NNF	105.5	107.7		112.1	100.2

Table 1. Molecular Geometries (A, Degrees)

Table 3	l (cont.)
---------	-----------

Molecule	Coordinat	e Exp	SINDO1	MINDO/3	MNDO	STO-3G
OF ₂	OF	1.405 ^{b,d}	1.333	1.439	1.281	1.358
	FOF	103.1	105.3	55.2	109.1	102.4
F ₂ CO	CO	1.174 ^{6,d}	1.204		1.219	1.209
	CF	1.311	1.333		1.316	1.347
	OCF	126.0	125.2		124.1	125.0
CF ₃	CF	1.33	1.326		1.312	1.352
	FCF	112.0	114.0		115.4	111.9
CHF ₃	CF	1.332 ^{6,d}	1.349		1.353	1.371
	CH	1.098	1.099		1.136	1.119
	FCF	108.8	109.8			108.6
	HCF	110.5	109.8		111.5	
NF ₃	NF	1.365 ^{6,d}	1.343		1.315	1.386
	FNF	102.3	104.3		106.1	102.1
CF ₃ CN	CC	1.461 ^{6,d}	1.525		1.498	
	CN	1.153	1.155		1.158	
	CF	1.335	1.360		1.355	
	CCF	111.4	111.3		111.9	
CF ₄	CF	1.321	1.344	1.303	1.347	1.366
C_2F_4	CC	1.311 ^t	1.379	1.313	1.381	1.332
	CF	1.319	1.347	1.294	1.318	1.353
	CCF	123.8	123.8	115.4	124.2	123.4
$N_2F_4(trans)$	NN		1.395			
	NF		1.352			
	NNF ¹		105.0			
	NNF ²		110.6			
	FNNF	h 4 6	190.0			
N_2F_4 (gauche)	NN	$1.47^{0,0,1}$	1.406		1.519	
	NF	1.37	1.352		1.302	
	NNF	104	104.0		106.2	
	FNNF	65	72.0		66.5	
CF ₃ OF	co	1.395	1.395		1.443	
	CF	1.319	1.351		1.342	
	OF	1.421	1.348		1.274	
	FCF	109.4	109.5		110.7	
0.5	COF	104.8	107.1		110.7	
C_2F_6		1.545	1.629	1.475	1.674	
	CF	1.326	1.359	1.327	1.346	
זות	CCF	109.8	110.6	107.6	110.7	
	BH	1.233	1.209		1.178	1.213
БП2	BH	1,180	1.152		1.159	1.161
חזת	HBH	131.0	139.1		126.6	123.5
BR3	BH	1.180-	1.163			1.160
³ DN	BU	1 0018	1.405			
BO		1.281 1.205^{a}	1.302		1 1 4 0	1.305
HBO	BO	1.205	1.220		1.169	1.190
1100	BU BH	(1.20)	1.211			1.176
BO	BO	(1.23) 1.25ª	1.130		1 3 2 9	1.142
BO ₂ H		1.40°	1.2/9		1.238	1.229
	BO^2	(1 34)	1.334			1.347
	O^1H	10	1.224			1.18/
	<u> </u>	1.0	0.970			0.983

 Table 1 (cont.)

Molecule	Coordina	te Exp	SINDO1	MINDO/3	MNDO	STO-3G
B(OH) ₂	во	1.27°	1.363	·		
	OH	0.97	0.977			
	OBO	(180)	123.7			
	BOH	105	106.3			
B(OH) ₃	BO		1.383		1.371	1.365
	OH		0.968		0.945	0.981
	BOH		109.4		116.5	109.8
BF	BF	1.262 ^a	1.301			1.243
BOF	BO	1.20 ^e	1.218			1.188
	BF	1.30	1.323			1.295
BF ₂	BF	1.295°	1.326		1.291	1.305
	FBF	120	125.0		125.6	116.9
BHF ₂	BF	1.311 ^{0,4}	1.334		1.316	1.303
	BH	1.189	1.154		1110	1.169
	FBF	118.3	117.0		114.8	118.2
BOF ₂	BO	1.40°	1.358			
	BF	1.30	1.342			
55 AV	FBO	11/	120.2			1 750
BF ₂ OH	BO	1.30	1.357			1.330
	BF	1.30	1.343			0.081
		120	0.909			110.0
	r BO $r^2 PO$	120	110.7			121 4
		120	123.7			121.4
DE		1 210	1 3 2 /		1 316	1 309
ВГ ₃ ³ р	Dr DD	1.510 1.590 ^a	1.534		1.510	1 531
D2 рц	2D DD	1.309 1.775°	1.336		1 753	1.805
$D_2 \Pi_6$	рр вц1	1 106	1 170		1 164	1.154
	вн ⁵	1 339	1 385		1.350	1.327
	$H^1 R H^2$	120.2	114.6		21000	122.6
	BBH ⁵	42.1	38.4		41.1	38.5
BaOa	BO^1	1.36°	1.361		1.341	
D ₂ O ₃	BO^2	1.20	1.225		1.181	
	BOB	120	114.8		123.2	
	OBO	(180)	175			
B ₂ E ₄	BB	1.67°	1.768		1.747	
	BF	1.32	1.348		1.316	
	BBF	120	122.6		123.9	
N.						
$B_3N_3H_6 H_1$	BN	1.435	1.459		1.429	
B						
	BH	1.258	1.167		1.172	
	NH	1.050	0.989		0.998	
0	BNB	121.1	120.4		123.6	
$B_3O_3H_3 \stackrel{B}{_{}} \stackrel{O}{_{}} \stackrel{B}{_{}} \stackrel{B}{} \stackrel{B}{_{}} \stackrel{B}{} } \stackrel{B}{} \stackrel{B}{} } \stackrel{B}{} } } } } } } } } } } } } } } } } $	во	1.36 ^{b,d}	1.404		1.380	

Molecule	Coordin	ate Exp	SINDO1	MINDO/3 MNDO	STO-3G
	вн	1.18	1.159	1.171	· · · · · · · · · · · · · · · · · · ·
	BOB	120	122.0	123.4	
BeH	BeH	1.343	1.296	1.291	1.301
BeH ₂	BeH	1.343 ^a	1.270	1.278	1.291
BeB	BeB		1.762		1.495
BeC	BeC		1.542		
BeN	BeN	1.406°	1.435		
BeO	BeO	1.331	1.308	1.335	1.269
BeOH	BeO	1.4°	1.422		
	OH	0.96	0.980		
	BeOH	(120)	107.3		
Be(OH) ₂	BeO	1.35	1.427	1.487	,
	OH	0.97	0.972	0.920	1
	BeOH	100	104.2	152.4	
BeF	BeF	1.361	1.375	1.458	1.297
BeF ₂	BeF	1.36 ^a	1.374	1.459	1.329
³ Be ₂ O	BeO	1.4°	1.403		
LiH	LiH	1.594 ^{b,d}	1.518		1.510
LiBe	LiBe		2.422		2.6
³ LiB	LiB		2.139		1.707
LiC	LiC		1.985		1.648
³ LiN	LiN	1.71°	1.750		2.347
LiO	LiO	1.62°	1.646		1.422
LiOH	LiO	1.60°	1.628		1.432
	OH	0.96	0.955		0.971
	LiOH	(110)	122.9		180.0
LiF	LiF	1.564 ^{b,d}	1.549		1.407
Li ₂	LiLi	2.672^{a}	2.737		2.696
CH ₂ Li ₂	LiC		1.948		1 923
	СН		1.080		1 091
	LiCLi		116.7		119.8
	HCH		107.3		106.7
Li					100.7
C ₂ Li ₂	CC		1.235		
Li	LiC		2.038		
	CCLi		72.3		
$C_2H_2Li_2$	CC		1.335		
	LiC		1.961		
	CH		1.124		
	CCLi		82.8		
	CCH		127.0		
Li ₂ O	LiO	1.59°	1.599		
T 1 NT	T 'N7				

^a Ref. [11] ^b Ref. [12] ^c Ref. [13] ^d microwave spectra ^e infrared spectra ^f electron diffraction

	E _B (Hartree)		$\Delta E_{\rm B}$ (kcal/mol)	$\Delta\Delta H f_{298}^0$ (kcal/mol)		$\Delta H f_{298}^0$ (kcal/mol)
Molecule	Exp	SINDO1	SINDO1	MINDO/3	MNDO	Exp
FH	0.221	0.2225	-0.9	1.1	5.3	-65.1
FH_2		0.2195				
CF	0.207	0.2226	-9.8			60.1 ^b
HCF	0.347	0.3361	-6.8		-8.5	30.0
CH₃F	0.672	0.6655	4.1	5.6	-4.1	-56.7
C ₂ HF	0.624	0.6207	2.1	11.1	10.0	5.0
³ NF	0.116	0.1222	-3.9		-27.9	59.5
FCN	0.475	0.4836	-5.4		-11.3	8.6
OF	0.084	0.0817	1.4		6.4	26.1
HOF	0.268	0.2457	14.0		4.8	-23.5
FCO	0.467	0.4917	-15.5			-41 ^b
HFCO		0.6139			1.1	-90.0
FNO	0.335	0.3218	8.3		-9.8	-15
FNO ₂	0.449	0.4012	29.9		26.6	-26.0
F ₂	0.060	0.0598	0.1	-2.5	7.3	0
CF ₂	0.421	0.4134	4.8	-46.1	-20.2	-45.0
$CH_{2}F_{2}$		0.6899		1.2	-4.1	-111.8
C_2F_2	0.604	0.5950	5.6	-35.5	-3.8	4.65 ^b
NF ₂	0.227	0.2215	3.4		-24.8	10.1
$N_2F_2(cis)$	0.4004	0.4085	-5.1		-18.6	-2.2
$N_2F_2(trans)$	0.3930	0.4041	-7.0		-16.9	2.5
OF ₂	0.148	0.1478	0.1	-24.4	12.3	5.9
F ₂ CO	0.679	0.6582	13.0	-8.1	13.9	-152.7
CF ₃	0.548	0.5844	-22.8	-55.3	-24.8	-112.4
CHF ₂	0.731	0.7265	2.8	-0.8	2.7	-163.9
NF ₃	0.325	0.3050	12.5	-3.2	-2.7	-31.8
CF ₂ CN	1.017	1.0331	-10.1		4.7	-118.4
CF₄	0.756	0.7743	-11.5	-0.8	8.7	-223.0
C₂F₄	0.928	0.9285	-0.3	-0.8	-18.4	-157.4
N_2F_4 (trans)		0.5172			-16.3	-2.0
N_2F_4 (gauche)	0.493	0.5149	-13.7			
CF ₂ OF	0.791	0.8129	-13.7		19.3	-182.8
C ₂ F ₆	1.254	1.2354	11.7	-4.3	21.3	-321.3
BH	0.130	0.1038	16.4	-54.8	-36.1	108.2
BH	0.283	0.2592	14.9		20.8	45.7
BH ₃	0.445	0.4347	6.5		-12.1	23.8
BC	0.171	0.1529	11.4			196 ^b
³ BN	0.212	0.1678	27.7			11.3 ^b
BO	0.307	0.2831	15.0		~19.9	18.4
HBO	(0.431)	0.4740				$-20^{b} \pm 20$
BO ₂	0.514	0.5080	3.8		6.6	-75.3
BO ₂ H	0.714	0.6925	13.5		1.0	-134.1
B(OH) ₂	0.767	0.7674	-0.3			112 ^b
B(OH) ₃	1.155	1.1753	-12.7	-4.2	0.7	-237.0
BF	0.288	0.2705	11.0			28.4
BOF	0.571	0.5465	15.4		3.5	-144.0
BF ₂	0.499	0.4702	18.1		-6.8	-130.0
-						

Table 2. Binding energies (Hartree)^c and heats of formation (kcal/mol)

Application to Ground States of Molecules

Table 2 (cont.)

Molecule		E _в (Hartree) Exp	SINDO1	ΔE _B (kcal/mol) SINDO1	$\Delta\Delta H f_{298}^0$ (kcal/mol) MINDO/3	MNDO	$\Delta H f_{298}^0$ (kcal/mol) Exp
BHF ₂	··· <u>··</u> ····	0.647	0.6480	-0.6		-1.7	-175.4
BOF ₂		0.691	0.7111	-12.6			~199 ^b
BF ₂ OH		0.881	0.8974	-10.3		5.6	-259.0
BF ₃		0.741	0.7515	-6.6		10.0	-271.4
$^{3}B_{2}$		0.113	0.1042	5.5			193.5
B_2H_6		0.952	0.9668	-9.3	4.5	-10.2	8.4
B_2O_3		1.038	1.0218	10.2	44.8	0.7	-199.2
B_2F_4		1.101	1.0788	13.9		2.8	-342.2
$B_3N_3H_6$		1.936	1.9360	0	-85.8	-8.9	-122.2
B ₃ O ₃ H ₃	B O O O	1.671	1.6926	-13.6		18.3	-290.0
BeH	в	0.089	0.0739	9.5		-15.8	76 ^b
BeHa		0.254	0.2354	117		17.6	-8
BeB		0.251	0.1088	11.7		17.0	U
BeC			0.1061				
BeN			0 1141				
BeO		0.173	0.1651	5.0		7 2	31
BeOH		0.354	0.3497	2.7		7.2	-25 ^b
Be(OH) ₂		0.751	0.7698	-11.8		19.8	-156.4
BeF		0.221	0.2078	8.3		-4.9	-48
BeF ₂		0.491	0.4931	-1.3		-2.0	-190 3
³ Be ₂ O		0.373	0.3662	4.2		2.0	-15.4
LiH		0.092	0.0812	7.0			33.65 ^b
LiBe			0.0642				50.00
³ LiB			0.0834				
LiC			0.0872				
³ LiN		0.114	0.1063	4.8			80 ^b
LiO		0.124	0.1283	2.7			20 ^b
LiOH		0.343	0.3275	9.7			-58.1^{b}
LiF		0.222	0.2222	0.1			-81.4^{a}
Li ₂		0.039	0.0581	-12.0			50.3 ^b
CH ₂ Li ₂			0.5747				0010
C ₂ Li ₂			0.7279				-14.2 ^b
CaH-III	LI		0.860				
		0 2820	0.009	_16			an ch
Li ₃ N		0.2027	0.4193	-4.0			-39.6-

^a Ref. [11] ^b Ref. [13] ^c 1 Hartree = 627.46 kcal/mol = 2625.3 kJ/mol

data tables [11–13]. A study of this table shows that bond lengths calculated by SINDO1 and bond angles calculated by STO-3G are the best. Actually there are too few bond angles for a good statistics. Also MINDO/3 and STO-3G values for geometries are insufficient for a final assessment. So the comparison is really between SINDO1 and MNDO. SINDO1 bond lengths in the fluorine compounds NF, FNO, F_2 , OF_2 and C_2F_6 are poor, but MNDO is even less satisfactory. STO-3G results are often not available but they can be quite poor as N_2F_2 reveals. Experimental data for boron and beryllium compounds are often unreliable and many of them are estimated values.

A few trends can be recognized. BH and BeH bonds tend to be too short. It is not clear, though, that the BH length in HBO is really so much underestimated. In this case STO-3G gives a similar result as SINDO1. The experimental geometry of B_2O_3 is uncertain. The BB bond of B_2F_4 is too long in SINDO1 as well as in MNDO. Lithium compounds are well reproduced in SINDO1.

3. Binding energies

Table 2 shows the experimental and SINDO1 binding energies, errors in the SINDO1 binding energies (ΔE_B) and the errors in the heats of formation ($\Delta \Delta H f_{298}^0$) given by MINDO/3 and MNDO. Unlike SINDO1, MINDO/3 and MNDO have been calibrated for heats of formation at 25°C. The experimental thermochemical data are taken from Dewar's papers and data tables [13–16]. For about 70 compounds experimental binding energies estimated from the available heats of formation at 0°K and energies of zero point vibration [17–19] can be compared with the predictions based on SINDO1. SINDO1 errors are not larger than 29.9 kcal/mol. The largest errors are in FNO₂, BN and HBO. MINDO/3 leads to high errors in many fluorine and boron compounds, the maximum errors in them being 55.3 kcal/mol and 85.8 kcal/mol respectively. Maximum MNDO errors in these compounds are reduced to 27.8 kcal/mol in NF and 36.1 kcal/mol in BH.

Similar to MNDO SINDO1 predicts cis- N_2F_2 to be stabler than the trans form and trans- N_2F_4 stabler than the gauche conformer. This result for N_2F_4 is, however, in variance with the experimental finding [11].

4. Ionization potentials

Available experimental data on the first ionization potential for over 40 compounds are compared with the values calculated via Koopmans' theorem in Table 3. The unlabelled data are from Dewar's papers, the labelled ones from data tables [11, 16]. Here MNDO results are superior to SINDO1 results. The SINDO1 values are mostly too large, quite a few of them being in error by more than 1 ev. MINDO/3 data are insufficient, but would probably be less reliable than SINDO1 results. STO-3G would probably be of not much help either. The only available value, 10.36 ev for FH⁸ is too small by almost 6 ev.

Molecule	Exp	SINDO1	MINDO/3	MNDO	STO-3G
FH	16.03	17.21	14.80	14.82	10.36
FH ₂		9.33			
CF	8.91°	9.99			
HCF		10.85			
CH ₃ F	13.31	14.14	12.05	13.05	
C ₂ HF	11.30	11.32	10.43	11.07	
³ NF		13.23			
FCN		13.00			
OF		13.73		14.11	
HOF	13.0	13.90		12.75	
FCO		10.43			
HFCO		12.35			
FNO	12.94	11.54		12.93	
FNO ₂	13.51	12.10		12.99	
F ₂	15.83	16.34	13.66	15.25	
CF ₂	11.7 [°]	11.55		12.18	
CH ₂ F ₂	12.71°	14.04			
$C_{2}F_{2}$	11.4 ^c	11.00			
NF ₂	12.10	13.10		12.23	
$N_2F_2(cis)$	13.4	12.72		13.00	
$N_2F_2(trans)$		12.58			
OF ₂	13.26	13.93		13.52	
F ₂ CO	13.62	13.45		13.60	
CF ₃	9.25°	11.32		11.20	
CHF ₄	13.73	14.62		13.93	
NF ₂	13.0°	13.38		20000	
CF ₃ CN		13.90			
CF	16.23	16.29	13.49	16.81	
C ₂ F ₄	10.54	10.70	20117	10.75	
N ₂ F ₄	12.84	12.81		13.02	
CF ₂ OF	13.64	14.51		14.23	
$C_{2}F_{6}$	14.6	13.00	12.62	14.50	
BH	9.7 ^a	9.45		10.1	
BH ₂	9.8°	9.43		2011	
BH ₂	$(11.4 - 14.0^{\circ})$	14.74			
BC	10.00 ^c	9.39			
³ BN		11.24			
BO	12.8°	12.19			
HBO	1210	14.22			
BO ₂		11.88			
BO ₂ H	12.6°	12.30			
$B(OH)_{2}$		7 97			
$B(OH)_2$	13.5°	13.12			
BF	11 11 ^c	10.80			
BOF	13.4°	13.71			
BF ₂		9.80			
BHF ₂		14.46			
BOF ₂		14.71			
BF ₂ OH		14.80			
BF ₃	16.22	16.31		15.95	
		- 0.0 %		~~~~~	

 Table 3. Ionization potentials (ev)

I able 3 (cont.)	Table	3	(cont.)
------------------	-------	---	---------

Molecule	Exp	SINDO1	MINDO/3	MNDO	STO-3G
³ B ₂		8.75			
B_2H_6	11.4 ^b	13.25			
B_2O_3	13.7 ^b	12.17		13.14	
B_2F_4	12.07 ^b	12.16		13.46	-
$B_3N_3H_6$ B N_1	` B ↓ 10.09 _N	10.90		10.96	
B ₃ O ₃ H ₃ B O B ₃ O ₃ H ₃ B	Ď D	11.77			
BeH	8.6ª	7.86			
BeH ₂		12.82		12.26	
BeB		8.46			
BeC		9.11			
BeN		9.73			
BeO	10.1 ⁶	11.80		11.25	
BeOH		7.89			
Be(OH) ₂		12,16		11.19	
BeF	9.1 ^b	8.47			
BeFa	14.5 ^b	14.96		14.45	
³ Be ₂ O	(10.5^{b})	7.31			
LiH	6.5ª	9.46			
LiBe		5.75			
³ LiB		6.94			
LIC		6.48			
³ LiN		7.09			
LiO	8.6 ^b	8.82			
LIOH		9.70			
LiF	11.3 ^b	10.89			
Lia	5.15 ^b	6.02			
CH ₂ Lia	0110	6.98			
Li		0.00			
C_2Li_2		8.80			
$C_2H_2Li_2$		5.86			
Li ₂ O	$(6.3-7.0^{b})$	8.41			
LIN		6.93			

^a Ref. [11]

^b Ref. [16]

5. Dipole moments

Table 4 presents a study on dipole moments. The available experimental values for 25 compounds are taken from Dewar's papers and other sources [11, 20]. SINDO1 results are in good accord with experiment and are better than those given by MNDO. The largest SINDO1 error of about 1 Debye occurs in CF_3CN

Molecule	Exp	SINDO1	MINDO/3	MNDO	STO-3G
FH	1.83	1.44	1.84	1.99	1.25
CF	0.65^{a}	0.28			0.61
HCF		1.29			1.14
CH₃F	1.86	1.55	1.71	1.76	1.15
C_2HF	0.73	0.70	0.60	1.57	0.61
³ NF		0.36			0.19
FCN	2.12 [°]	1.51		0.89	1.84
OF		0.29			
HOF	2.23	1.51		1.81	1.47
FCO		0.38			0.73
HFCO	2.02	1.61		2.50	1.52
FNO	1.81	0.71		0.60	0.21
FNO ₂	0.47	0.57		0.65	
CF ₂	0.47	0.15		0.04	0.58
CH_2F_2	1.96	1.73		2.21	1.30
NF ₂	0.14	0.37		0.01	
N_2F_2	0.16	0.42		0.02	0.90
OF ₂	0.30 ^b	0.25			0.21
F ₂ CO	0.95	0.63		0.81	0.90
CF ₃		0.45			0.34
CHF ₃	1.65	1.45		2.23	1.13
NF ₃	0.24	0.20		0.20	0.40
CF ₃ CN	1.26	0.20		0.35	0.110
$N_2F_4(gauche)$		0.03			
N_2F_4 (trans)		0.07			
CF ₂ OF	0.33	0.18		0.09	
BH	1.27^{a}	1.52		0.49	0.90
BH ₂		0.28		0149	0.21
BC		0.63			0.21
³ BN		1 70			2.06
BO		1.80			1.64
HBO		1.60			1.04
BO-H		2 44		2 71	2.51
B(OH)-		2.44		2.71	2.51
BCOIL)2 BE	0.5ª	2.50			1 10
BOF	0.5	1 13			1.18
BE.		1.15			1.43
DI ²	0.07	1.00		1 22	0.34
BOF.	0.97	0.41		1.55	0.31
BCI ² BE.OU	1.96	2.05		2 10	1 47
	1.80	2.05		2.10	1.4/
		1.05		0.81	0.50
Den		0.30		1.38	0.59
DeD		0.54			0.83
Det.		3.38			
DCIN DoO		2.26		5 22	1.00
		5.25		5.32	4.20
DeUH DoF		1.63		1 ()	
Ber	5.00	1.03		1.63	
	5.90	5.70			4.84
LIBE		4.26			0.31

 Table 4. Dipole moments (Debye)

Molecule	Exp	SINDO1	MINDO/3 MNDC	STO-3G
³ LiB		5.89		1.26
LiC		6.62		0.98
³ LiN		6.45		2.16
LiO		5.78		2.47
LiOH		4.98		1.47
LiF	6.28ª	5.95		3.11
CH ₂ Li ₂		5.26		3.21
$C_2H_2Li_2$		2.87		
^a Ref. [20]				

^b Ref. [11] ^c Ref. [21]

Table	5.	Error	statistics	for	various	minimal	basis	set	мо	methods	with	number	of	values	in
parent	hes	ses													

	Туре	Compound	SINDO1	MINDO/3	MNDO	STO-3G
Bond length (A)	XY	F	0.037(47)	0.023(10)	0.052(38)	0.041(33)
		F,B	0.032(22)	—	0.019(12)	0.020(16)
		F,B,Be,Li	0.027(13)	—	0.084(4)	0.082(5)
		all	0.034(82)		0.047(54)	0.039(54)
Bond length (A)	XH	F	0.011(7)	0.007(4)	0.027(5)	0.021(7)
		F,B	0.026(10)		0.036(6)	0.019(2)
		F,B,Be,Li	0.037(6)		0.056(3)	0.043(1)
		all	0.024(23)	—	0.037(14)	0.024(10)
Bond angle	XYZ	F	1.7(18)	16.2(3)	3.1(15)	1.8(15)
(Degrees)		F,B	3.1(6)	—	3.7(5)	0.9(4)
		F,B,Be,Li			<u> </u>	
		all	2.0(24)		3.3(20)	1.6(19)
Bond angle (Degrees)	ХҮН, НХН	F	2.9(6)	1.2(1)	4.1(4)	1.6(3)
		F,B	4.8(4)		4.4(1)	4.0(4)
		F,B,Be,Li				
		all	3.7(10)		4.1(5)	3.0(5)
Binding energy	Ε	F	8.3(29)	13.4(15)	12.6(29)	
(kcal/mol)		F,B	10.8(23)	38.8(5)	9.9(17)	
		F,B,Be,Li	5.7(15)	-	11.2(6)	
		all	8.6(67)	19.7(20)	11.6(52)	
Ionization	Ι	F	0.77(23)	1.71(6)	0.43(19)	
potential (ev)		F,B	0.60(13)	_	0.70(5)	
		F,B,Be,Li	0.74(7)	_	0.60(2)	
		all	0.71(43)	—	0.50(26)	
Dipole moment	D	F	0.35(19)	0.10(3)	0.44(17)	0.46(15)
(Debye)		F,B	0.17(4)		0.46(3)	0.50(4)
-		F,B,Be,Li	0.27(2)	_	—	2.16(2)
		all	0.32(25)	—	0.45(20)	0.63(21)

Application to Ground States of Molecules

and FNO. MNDO has a similar error in these compounds. High dipole moments observed for LiH and LiF are well reproduced in SINDO1. STO-3G dipole moments in these cases [38] are much poorer.

6. Conclusion

In summary, an error statistics with average absolute errors,

$$\Delta = \frac{1}{n} \sum_{i=1}^{n} |\Delta_i|$$

in the investigated molecular properties for different methods is given in Table 5. The number of values used in the statistics are given in parentheses. Excluded were the cases where the experimental data are uncertain. The classification of molecules into groups, indicated in column 3 of the Table, is as described in the preceding paper. Unfortunately, MINDO/3 data on various molecular properties studied here are scanty and are not properly representative for a reliable statistic. In bond lengths SINDO1 shows smaller error than MNDO and STO-3G. For bond angles also SINDO1 appears superior to MNDO, but the number of data considered here is not sufficiently large for a final assessment. For binding energies SINDO1 represents an improvement over MNDO and MINDO/3. MNDO provides a better estimate of ionization potentials compared to SINDO1 but reverse is the situation with dipole moments.

Acknowledgement: This research was supported by Deutsche Forschungsgemeinschaft. Computations were performed with a CYBER 76 at Universität Hannover.

References

- 1. Nanda, D. N., Jug, K.: Theoret. Chim. Acta (Berl.) 57, 95-106 (1980)
- 2. Jug, K., Nanda, D. N.: Theoret. Chim. Acta 57, 107-130 (1980)
- 3. Bingham, R. C., Dewar, M. J. S., Lo, D. H.: J. Am. Chem. Soc. 97, 1307 (1975)
- 4. Dewar, M. J. S., McKee, M. L.: J. Am. Chem. Soc. 99, 5231 (1977)
- 5. Dewar, M. J. S., Rzepa, H. S.: J. Am. Chem. Soc. 99, 58, 777, 784 (1978)
- 6. Hehre, W. J., Stewart, R. F., Pople, J. A.: J. Chem. Phys. 51, 2657 (1969)
- 7. Newton, M. D., Lathan, W. A., Hehre, W. J., Pople, J. A.: J. Chem. Phys. 52, 4064 (1970)
- 8. Lathan, W. A., Hehre, W. J., Curtiss, L. A., Pople, J. A.: J. Am. Chem. Soc. 93, 6377 (1971)
- 9. Hehre, W. J.: J. Am. Chem. Soc. 97, 5308 (1975)
- DelBene, J. E., Worth, G. T., Marchese, F. T., Conrad, M. E.: Theoret. Chim. Acta (Berl.) 36, 195 (1975)
- Pople, J. A., Beveridge, D. L.: Approximate molecular orbital theory, New York: McGraw-Hill, 1970
- 12. Gordy, W., Cook, R. L.: Microwave molecular spectra, New York: Wiley-Interscience, 1970
- Stull, D. R., Prophet, H.: JANAF Thermochemical tables, Second Edition, Washington: NBS. 1970
- 14. Cox, J. D., Pilcher, G.: Thermochemistry of organic and organometallic compounds, New York: Academic Press, 1970
- 15. Sanderson, R. T.: Chemical bonds and bond energy, New York: Academic Press, 1971

- 16. Rosenstock, H. M., Draxl, K., Steiner, B. W., Herron, J. T.: Energetics of Gaseous Ions, J. Phys. Chem. Ref. Data 6, Suppl. 1, 1977
- 17. Shimanouchi, T.: Tables of molecular vibrational frequencies, Vol I. Washington: NBS, 1972
- Shimanouchi, T.: Tables of molecular vibrational frequencies, Vol. II. J. Phys. Chem. Ref. Data 6, 993–1102, Washington: NBS, 1977
- Herzberg, G.: Molecular spectra and structure, Vol. I-III, New York: Van Nostrand Reinhold, 1950–1968
- 20. McClellan, A. L.: Tables of Experimental Dipole Moments, Vol. II. Rahara Enterprises 1974
- 21. Maki, A. G., Freund, S. M.: J. Mol. Spectry. 66, 493 (1977)
- 22. Whiteside, R. A., Binkley, J. S., Krishnan, R., DeFrees, D. J., Schlegel, H. B., Pople, J. A.: Carnegie-Mellon quantum chemistry archive 1980

Received April 23, 1980